Перевод: с русского на все языки

со всех языков на русский

тепловых электростанций

  • 1 тепловых электростанций

    • tepelných elektráren

    Русско-чешский словарь > тепловых электростанций

  • 2 выбросы тепловых электростанций

    выбросы тепловых электростанций
    выкiды цеплавых электрастанцый

    Русско-белорусский словарь математических, физических и технических терминов > выбросы тепловых электростанций

  • 3 Научно-исследовательский центр по проблемам повышения КПД тепловых электростанций

    1. CIRCE
    2. Center of Research for Power Plant Efficiency

     

    Научно-исследовательский центр по проблемам повышения КПД тепловых электростанций

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > Научно-исследовательский центр по проблемам повышения КПД тепловых электростанций

  • 4 реконструкция тепловых электростанций

    Makarov: repowering

    Универсальный русско-английский словарь > реконструкция тепловых электростанций

  • 5 энергия, заменяющая электроэнергию тепловых электростанций

    Универсальный русско-английский словарь > энергия, заменяющая электроэнергию тепловых электростанций

  • 6 мощность тепловых электростанций

    n
    electr. kalorische Kapazität, thermische Kapazität, thermische Leistung

    Универсальный русско-немецкий словарь > мощность тепловых электростанций

  • 7 мощность тепловых электростанций

    Russian-german polytechnic dictionary > мощность тепловых электростанций

  • 8 коэффициент полезного действия тепловых электростанций

    Русско-казахский экономический словарь > коэффициент полезного действия тепловых электростанций

  • 9 и тепловых электростанций области углем

    • a tepelných elektráren oblasti uhlím

    Русско-чешский словарь > и тепловых электростанций области углем

  • 10 бассейн

    бассейн
    1. бассейн; искусственный водоём

    Йӱштылмӧ бассейн плавательный бассейн;

    теле бассейн зимний бассейн;

    бассейныште йӱштылаш купаться в бассейне.

    Котельный пелен бассейным ыштеныт, да физкультурым туныктышо мемнам арняш кум гана кондыштеш. А. Мурзашев. Рядом с котельной построили бассейн, и учитель физкультуры водит нас туда три раза в неделю.

    2. геогр. бассейн; совокупность притоков реки, озера и т. п., а также площадь стока поверхностных и подземных вод в водоём (эҥер, ер йыр улшо да тыгак тушко йоген пурышо изеҥер-влак кумдык)

    Кӱшыл бассейн верхний бассейн;

    Юлын бассейнже бассейн Волги.

    Нине бассейнлаште миллион дене тыгыде кол-влак кушкыт. Е. Янгильдин. В этих бассейнах миллионами растут мелкие рыбы.

    3. геол. бассейн; область залегания горных пород (мланде йымалсе поянлык кийыме вер)

    Мланде шӱй бассейн каменноугольный бассейн.

    Кугу тепловой электростанций-влакым Канско-Ачинский ден Экибастузский бассейнлаште виш йӧн дене лукмо шулдакан мланде шӱй негызеш нӧлташ палемдыме. Строительство крупных тепловых электростанций намечено осуществлять на базе дешёвых углей, добываемых открытым способом в Канско-Ачинском и Экибастузском бассейнах.

    Марийско-русский словарь > бассейн

  • 11 выбросы

    Русско-белорусский словарь математических, физических и технических терминов > выбросы

  • 12 мощность

    мощность ж. Arbeitsintensität f; Dicke f; Energiefluß m; Kapazität f; мат. Kardinalzahl f; Kraft f; эл. Leistung f; Leistungsfähigkeit f; Macht f; геол. Mächtigkeit f; англ. output
    мощность ж., расходуемая на разгон м. ж.-д. Beschleunigungsleistung f
    мощность ж., расходуемая при ускорении эл. Beschleunigungsleistung f
    мощность ж., расходуемая на подачу расплава в прессформу Einspritzleistung f
    мощность ж., затрачиваемая на движение с. авто. Fahrleistung f
    мощность ж. (насоса, вентилятора) Förderleistung f
    мощность ж., идущая на нагрев м. Heizleistung f
    мощность ж., расходуемая на регулирование с. Regelleistung f
    мощность ж., передаваемая через шину Reifenleistung f
    мощность ж., затрачиваемая на преодоление с. сопротивления качению авто. Rollwiderstandsleistung f
    мощность ж., расходуемая на резание с. Schneidleistung f; Schnittleistung f
    мощность ж., развиваемая маховыми массами Schwungleistung f
    мощность ж., расходуемая на питание с. (котлоагрегата водой) Speiseleistung f
    мощность ж., затрачиваемая на преодоление с. подъёма авто. Steigleistung f
    мощность ж., расходуемая на преодоление с. подъёма ж.-д. Steigleistung f
    мощность ж. (напр. локомотива), приходящаяся на тонну общей массы Tonnenleistung f
    мощность ж. в импульсе Impulsleistung f; Impulsstoßleistung f; Pulsleistung f
    мощность ж. вспышки астр. Intensitätsklasse f der Sonneneruption
    мощность ж. звуковой энергии Leistung f der Schallquelle; Schalleistung f; akustische Leistung f
    мощность ж. излучения яд. Dosisleistung f; Sendeleistung f; Strahlungsleistung f; Strahlungsleisturig f
    мощность ж. источника Ergiebigkeit f der Strahlungsquelle; Quellenstärke f; Quellstärke f; яд. Stärke f der Strahlungsquelle
    мощность ж. кермы K; Kermaleistung f
    мощность ж. критерия Macht f; Teststärke f; Trennschärfe f des Tests
    мощность ж. на валу Bremsleistung f; Leistung f an der Welle; суд. Wellenleistung f
    мощность ж. на выходе эл. Ausgangsleistung f; Endleistung f; рад. рег. Leistungsabgabe f
    мощность ж. на единицу площади Flächendichte f der Leistung; физ. Leistung f je Oberflächeneinheit
    мощность ж. на крюке (тягача, буксира) Hakenleistung f
    мощность ж. насоса Pumpenantriebsleistung f; Pumpenleistung f; Pumpleistung f
    мощность ж. отключения эл. Abschaltleistung f; Ausschaltleistung f
    мощность ж. печи Ofenfassung f; Ofenfassungsvermögen n; мет. Ofenkapazität f; Ofenleistung f; Ofenleistungsvermögen n
    мощность ж. пласта геол. Flözmächtigkeit f; Schichtmächtigkeit f
    мощность ж. потерь эл. Verlustleistung f; nutzlose Leistung f
    мощность ж. топки Feuerraumleistung f; Feuerungsleistung f
    мощность ж. трения Reibungsleistung f; mechanischer Leistungsverlust m
    мощность ж. удара ж. Stoßleistung f; Stoßstärke f
    мощность ж. факела Feuerkraft f; Feuerleistung f
    мощность ж. холостого хода (напр., индукционной печи) Blindlastverbrauch m
    мощность ж. шахты (рудника, разреза, карьера) Bergwerksleistung f; Bergwerksproduktionkapazität f

    Большой русско-немецкий полетехнический словарь > мощность

  • 13 бункерное топливо

    топливо с, бункерное жидкое или твёрдое топливо, используемое для бункеровки тепловых электростанций, теплоцентралей и судов

    Русско-немецкий словарь по энергетике > бункерное топливо

  • 14 электростанционная энергетика

    энергетика ж, электростанционная энергетика тепловых электростанций

    Русско-немецкий словарь по энергетике > электростанционная энергетика

  • 15 водопроводная насосная станция

    1. waterworks
    2. water supply plant
    3. water station
    4. water pumping station

     

    водопроводная насосная станция
    Сооружение водопровода, оборудованное насосно-силовой установкой для подъема и подачи воды в водоводы и водопроводную сеть.
    [ ГОСТ 25151-82]


    По своему назначению и расположению в общей схеме водоснабжения водопроводные насосные станции подразделяются:
     
    • на станции первого подъема, второго и последующих подъемов;
    • повысительные;
    • циркуляционные.
    Насосные станции первого подъема забирают воду из источника и подают ее на очистные сооружения или, если не требуется очистка воды, в аккумулирующие емкости (резервуары чистой воды, водонапорные башни, гидропневматические баки), а в некоторых случаях непосредственно в распределительную сеть.
    Насосные станции второго подъема подают воду потребителям из резервуаров чистой воды, которые позволяют регулировать подачу.
    Повысительные насосные станции предназначены для повышения напора на участке сети или в водоводе.
    Циркуляционные насосные станции входят в замкнутые системы технического водоснабжения промышленных предприятий и тепловых электростанций.   По степени обеспеченности подачи воды насосные станции подразделяются на три категории:
    • Первая категория допускает перерыв в подаче только на время (не более 10 мин), необходимое для выключения поврежденного и включения резервных элементов (оборудования, арматуры, трубопроводов), и снижение подачи на хозяйственно-питьевые нужды не более 30 % расчетного расхода и на производственные нужды до предела, установленного аварийным графиком работы предприятий.
    • Вторая категория допускает перерыв в подаче для проведения ремонта не более чем на 6 ч.
    • Третья категория допускает перерыв в подаче не более чем на 24 ч и соответствующее снижение подачи не более чем на 15 сут.
    К первой категории относятся насосные станции, обслуживающие технический водопровод; системы водоснабжения населенных пунктов с числом жителей свыше 50 000 чел, подающие воду непосредственно в сеть противопожарного и объединенного хозяйственно-противопожарного водопровода.
    Ко второй категории относятся насосные станции, обслуживающие водопровод населенных пунктов с числом жителей от 5000 до 50 000 чел., если подача воды на пожаротушение возможна и при временной остановке этих станций; насосные станции водопроводов населенных пунктов с числом жителей до 500 чел. и других объектов, указанных в нормах.
    К третьей категории относятся насосные станции поливочных водопроводов.   При проектировании режим работы насосных станций первого подъема увязывают с работой водозаборных сооружений и камер переключений, а насосных станций второго подъема - с резервуарами чистой воды и системой их обслуживания.   Насосные станции первого подъема бывают раздельного типа, когда водозаборное сооружение отделено от здания насосной станции, и совмещенного типа, когда машинный зал насосной станции объединяется в одну конструкцию с водоприемником.   В зависимости от типа насосного оборудования различают насосные станции с горизонтальными и вертикальными центробежными и осевыми насосами.   По расположению насосов относительно уровня воды в водоеме, приемном резервуаре или резервуаре чистой воды различают станции: с насосами, установленными с положительной высотой всасывания; с насосами, установленными под напором (под залив).   По расположению машинного зала относительно поверхности земли насосные станции бывают:
    В наземных насосных станциях отметка пола машинного зала определяется планировочными отметками окружающей земли
    В полузаглубленных насосных станциях пол машинного зала заглублен по отношению к поверхности окружающей земли. Особенностью таких станций является отсутствие перекрытия между первым этажом и машинным залом.
    Особенностью заглубленных насосных станций является наличие перекрытия между машинным залом и первым этажом. При большом заглублении насосных станций (шахтный тип) между машинным залом и поверхностью земли могут устраиваться дополнительные подземные этажи, на которых располагается вспомогательное оборудование.
    Подземные насосные станции расположены полностью под землей и, как правило, не имеют надземной части (верхнего строения).
    По форме подземной части в плане насосные станции могут быть:прямоугольными, круглыми, эллиптическими.
      По характеру управления насосные станции могут быть: с ручным управлением, автоматические, полуавтоматические, с дистанционным управлением.

    [Журба М. Г., Соколов Л. И., Говорова Ж. М. Водоснабжение: Проектирование систем и сооружений. Учебник. - М.: АСВ, 2003.]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > водопроводная насосная станция

  • 16 характеристики

    1. specifications
    2. III

     

    характеристики

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

    5.2 Характеристики

    5.2.1 Краны должны обеспечивать подачу воды на смыв при минимальном рабочем давлении 0,1 МПа в количествах и с расходами, указанными в таблице 1.

    Таблица 1

    Условный проход крана Dy, мм

    Расход воды, л/с

    Количество воды, поступающей на смыв за один цикл, л

    мин.

    макс.

    мин.

    макс.

    10, 15

    0,2

    1,0

    0,6

    4,0

    20

    1,0

    1,7

    4,0

    7,0

    25

    1,5

    2,0

    6,0

    8,0

    5.2.2 Краны должны иметь устройство для регулирования количества воды, подаваемой на смыв.

    5.2.3 Краны должны быть герметичны и выдерживать пробное давление воды не менее 1,6 МПа для кранов I группы и не менее 0,9 МПа - для кранов II группы.

    5.2.4 Краны должны обеспечивать плотное закрытие при рабочих давлениях до 1,0 МПа для кранов I группы и до 0,6 МПа - для кранов II группы.

    5.2.5 Конструкция крана должна исключать возможность обратного всасывания загрязненной воды в водопроводную сеть из промываемых приборов при возникновении разрежения в системе водопровода до 0,08 МПа. При этом высота подъема воды в смывной трубе не должна превышать 250 мм.

    5.2.6 Конструкция крана должна обеспечивать такое его закрытие, при котором давление воды в водопроводной сети перед ним не должно увеличиваться более чем на 50% по сравнению со статическим давлением.

    5.2.7 Усилие на пусковое устройство (ручка, кнопка) крана, необходимое для его открытия, не должно быть более 35 Н, а открывание и закрывание вентиля должно происходить при крутящем моменте не более 2Н × м при давлениях, указанных в п. 5.2.4.

    5.2.8 Технический ресурс кранов с учетом замены резино-технических изделий должен составлять не менее 100000 рабочих циклов, наработка до отказа - не менее 50000 циклов.

    5.2.9 Краны должны классифицироваться по трем акустическим группам I, II, III в зависимости от значения La - уровня шума арматуры в дБА или Ds - приведенной разности уровней в дБА в соответствии с таблицей 2 для вновь разрабатываемой водоразборной арматуры.

    Таблица 2                                                                                                 Уровень шума в дБА

    Акустическая группа

    Ds

    La

    I

    ³ 25

    £ 20

    II

    ³ 25

    £ 30

    III

    < 15

    < 50

    5.2.10 Параметр шероховатости видимых в условиях эксплуатации поверхности деталей с защитно-декоративным гальваническим покрытием должен быть Ra £ 0,63 по ГОСТ 2789.

    5.2.11 Наружная видимая после монтажа поверхность крана из цветных металлов должна иметь защитно-декоративное гальваническое покрытие вида Н9.б.Х.б по ГОСТ 9.303.

    Допускается применение других видов защитно-декоративных покрытий, обеспечивающих качество защиты и декоративность в течение установленного ресурса.

    5.2.12 Защитно-декоративное покрытие должно быть сплошным, не иметь отслаивания покрытия и др. дефектов и должно удовлетворять ГОСТ 9.301.

    5.2.13 Детали, изготовленные из пластмасс, не должны иметь трещин, вздутий, наплывов, раковин, следов холодного спая и посторонних включений, видимых без применения увеличительных приборов. Выступы или углубления в местах удаления литников не должны превышать 1 мм, а следы от разъема пресс-форм - не более 0,5 мм.

    Не допускаются отклонения формы деталей, влияющие не качество их сопряжений.

    5.2.14 Детали крана, изготовленные из металла, не должны иметь видимых дефектов (вмятин, гофр, царапин и др.).

    5.2.15 Основные размеры метрической резьбы должны соответствовать требованиям ГОСТ 24705 с допусками по ГОСТ 16093, степень точности 7Н - для внутренней и 8g - для наружной резьбы.

    Резьба должна быть чистой и не иметь поврежденных витков. Сбеги резьб, недорезы проточки и фаски должны выполняться по ГОСТ 10549. Не допускается наличие сорванных витков, а также заусенцы на поверхности резьбы, препятствующие соединению деталей.

    Источник: ГОСТ 11614-94: Краны смывные полуавтоматические. Технические условия оригинал документа

    1.2. Характеристики

    1.2.1. Качественные показатели зол различных видов должны соответствовать требованиям, указанным в таблице.

    Наименование показателя

    Вид сжигаемого угля

    Значение показателя в зависимости от вида золы

    I

    II

    III

    IV

    1. Содержание оксида кальция (СаО), % по массе:

    для кислой золы, не более

    Любой

    10

    10

    10

    10

    для основной золы, св.

    Бурый

    10

    10

    10

    10

    в том числе:

    свободного оксида кальция (СаОсв) не более:

    для кислой золы

    Любой

    Не нормируется

    для основной золы

    Бурый

    5

    5

    Не нормируется

    2

    2. Содержание оксида магния (MgO), % по массе, не более

    Любой

    5

    5

    Не нормируется

    5

    3. Содержание сернистых и сернокислых соединений в пересчете на SO3, % по массе, не более:

    для кислой золы

    Любой

    3

    5

    3

    3

    для основной золы

    Бурый

    5

    5

    6

    3

    4. Содержание щелочных оксидов в пересчете на Na2O, % по массе, не более:

    для кислой золы

    Любой

    3

    3

    3

    3

    для основной золы

    Бурый

    1,5

    1,5

    3,5

    1,5

    5. Потеря массы при прокаливании (п.п.п.), % по массе, не более:

    для кислой золы

    Антрацитовый

    20

    25

    10

    10

    Каменный

    10

    15

    7

    5

    Бурый

    3

    5

    5

    2

    для основной золы

    Бурый

    3

    5

    3

    3

    6. Удельная поверхность, м2/кг, не менее:

    для кислой золы

    Любой

    250

    150

    250

    300

    для основной золы

    Бурый

    250

    200

    150

    300

    7. Остаток на сите № 008, % по массе, не более:

    для кислой золы

    Любой

    20

    30

    20

    15

    для основной золы

    Бурый

    20

    20

    30

    15

    Примечания:

    1. Допускается в основных золах содержание свободного оксида кальция СаОсв и оксида магния MgO выше указанного в таблице, если обеспечивается равномерность изменения объема образцов при испытании их в автоклаве или применение этих зол обосновано специальными исследованиями бетона по долговечности с учетом конкретных условий эксплуатации.

    2. Допускается в золах содержание сернистых и сернокислых соединений и потеря массы при прокаливании выше указанных в таблице, если применение этих зол обосновано специальными исследованиями по долговечности бетонов и коррозионной стойкости арматуры.

    3. Допускается в золах I - III видов больший остаток на сите № 008 и меньшая величина удельной поверхности, чем указано в таблице, если при применении этих зол обеспечиваются заданные показатели качества бетона.

    1.2.2. Золы в смеси с портландцементом должны обеспечивать равномерность изменения объема при испытании образцов кипячением в воде, а основные золы III вида - в автоклаве.

    1.2.3. Влажность золы должна быть не более 1 % по массе.

    1.2.4. Золы-уноса в зависимости от величины суммарной удельной эффективной активности естественных радионуклидов Аэфф применяют:

    для производства материалов, изделий и конструкций, применяемых для строительства и реконструкции жилых и общественных зданий при Аэфф до 370 Бк/кг;

    для производства материалов, изделий и конструкций, применяемых для строительства производственных зданий и сооружений, а также строительства дорог в пределах территорий населенных пунктов и зон перспективной застройки при Аэфф свыше 370 Бк/кг до 740 Бк/кг.

    При необходимости в национальных нормах, действующих на территории государства, величина удельной эффективной активности естественных радионуклидов может быть изменена в пределах норм, указанных выше.

    Источник: ГОСТ 25818-91**: Золы-уноса тепловых электростанций для бетонов. Технические условия

    Русско-английский словарь нормативно-технической терминологии > характеристики

  • 17 энергетическая система

    1. power system
    2. power supply system
    3. grid
    4. energy system
    5. electrical supply network
    6. electric-power pool
    7. electric system

     

    энергетическая система
    энергосистема
    Совокупность электростанций, электрических и тепловых сетей, соединенных между собой и связанных общностью режима в непрерывном процессе производства, преобразования и распределения электрической энергии и тепла при общем управлении этим режимом
    [ ГОСТ 21027-75]

    энергосистема
    Матрица электрической распределительной системы (Термины Рабочей Группы правового регулирования ЭРРА).
    [Англо-русский глосcарий энергетических терминов ERRA]

    энергосистема
    Совокупность электростанций, электрических и тепловых сетей, соединенных между собой и связанных общностью режима (работающих параллельно) в непрерывном процессе производства, преобразования и распределения электрической энергии и тепла при общем управлении этим режимом. Различаются: 1) дефицитная энергосистема; 2) избыточная энергосистема; 3) изолированная энергосистема.
    [ http://slovar-lopatnikov.ru/]

    EN

    grid
    Matrix of an electrical distribution system (ERRA Legal Regulation Working Group Terms).
    [Англо-русский глосcарий энергетических терминов ERRA]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > энергетическая система

  • 18 intermediate coolant

    теплоноситель промежуточного контура (применяется в тепловых схемах атомных электростанций, имеющих три контура)

    Англо-русский словарь промышленной и научной лексики > intermediate coolant

  • 19 энергосистема

    энергосистема ж совокупность электростанций, электрических и тепловых сетей, сединёных между собой и связанных общностью процесса производства, преобразования и распределения электрической энергии и тепла при общем управлении этим процессом

    Русско-немецкий словарь по энергетике > энергосистема

  • 20 ИБП для централизованных систем питания

    1. centralized UPS

     

    ИБП для централизованных систем питания
    ИБП для централизованного питания нагрузок
    -
    [Интент]

    ИБП для централизованных систем питания

    А. П. Майоров

    Для многих предприятий всесторонняя защита данных имеет жизненно важное значение. Кроме того, есть виды деятельности, в которых прерывания подачи электроэнергии не допускаются даже на доли секунды. Так работают расчетные центры банков, больницы, аэропорты, центры обмена трафиком между различными сетями. В такой же степени критичны к электропитанию телекоммуникационное оборудование, крупные узлы Интернет, число ежедневных обращений к которым исчисляется десятками и сотнями тысяч. Третья часть обзора по ИБП посвящена оборудованию, предназначенному для обеспечения питания особо важных объектов.

    Централизованные системы бесперебойного питания применяют в тех случаях, когда прерывание подачи электроэнергии недопустимо для работы большинства единиц оборудования, составляющих одну информационную или технологическую систему. Как правило, проблемы питания рассматривают в рамках единого проекта наряду со многими другими подсистемами здания, поскольку они требуют вложения значительных средств и увязки с силовой электропроводкой, коммутационным электрооборудованием и аппаратурой кондиционирования. Изначально системы бесперебойного питания рассчитаны на долгие годы эксплуатации, их срок службы можно сравнить со сроком службы кабельных подсистем здания и основного компьютерного оборудования. За 15—20 лет функционирования предприятия оснащение его рабочих станций обновляется три-четыре раза, несколько раз изменяется планировка помещений и производится их ремонт, но все эти годы система бесперебойного питания должна работать безотказно. Для ИБП такого класса долговечность превыше всего, поэтому в их технических спецификациях часто приводят значение важнейшего технического показателя надежности — среднего времени наработки на отказ (Mean Time Before Failure — MTBF). Во многих моделях с ИБП оно превышает 100 тыс. ч, в некоторых из них достигает 250 тыс. ч (т. е. 27 лет непрерывной работы). Правда, сравнивая различные системы, нужно учитывать условия, для которых этот показатель задан, и к предоставленным цифрам относиться осторожно, поскольку условия работы оборудования разных производителей неодинаковы.

    Батареи аккумуляторов

    К сожалению, наиболее дорогостоящий компонент ИБП — батарея аккумуляторов так долго работать не может. Существует несколько градаций качества батарей, которые различаются сроком службы и, естественно, ценой. В соответствии с принятой два года назад конвенцией EUROBAT по среднему сроку службы батареи разделены на четыре группы:

    10+ — высоконадежные,
    10 — высокоэффективные,
    5—8 — общего назначения,
    3—5 — стандартные коммерческие.

    Учитывая исключительно жесткую конкуренцию на рынке ИБП малой мощности, производители стремятся снизить до минимума начальную стоимость своих моделей, поэтому часто комплектуют их самыми простыми батареями. Применительно к этой группе продуктов такой подход оправдан, поскольку упрощенные ИБП изымают из обращения вместе с защищаемыми ими персональными компьютерами. Впервые вступающие на этот рынок производители, пытаясь оттеснить конкурентов, часто используют в своих интересах неосведомленность покупателей о проблеме качества батарей и предлагают им сравнимые по остальным показателям модели за более низкую цену. Имеются случаи, когда партнеры крупной фирмы комплектуют ее проверенные временем и признанные рынком модели ИБП батареями, произведенными в развивающихся странах, где контроль за технологическим процессом ослаблен, а, значит, срок службы батарей меньше по сравнению с "кондиционными" изделиями. Поэтому, подбирая для себя ИБП, обязательно поинтересуйтесь качеством батареи и ее производителем, избегайте продукции неизвестных фирм. Следование этим рекомендациям сэкономит вам значительные средства при эксплуатации ИБП.

    Все сказанное еще в большей степени относится к ИБП высокой мощности. Как уже отмечалось, срок службы таких систем исчисляется многими годами. И все же за это время приходится несколько раз заменять батареи. Как это ни покажется странным, но расчеты, основанные на ценовых и качественных параметрах батарей, показывают, что в долгосрочной перспективе наиболее выгодны именно батареи высшего качества, несмотря на их первоначальную стоимость. Поэтому, имея возможность выбора, устанавливайте батареи только "высшей пробы". Гарантированный срок службы таких батарей приближается к 15 годам.

    Не менее важный аспект долговечности мощных систем бесперебойного питания — условия эксплуатации аккумуляторных батарей. Чтобы исключить непредсказуемые, а следовательно, часто приводящие к аварии перерывы в подаче электропитания, абсолютно все включенные в приведенную в статье таблицу модели оснащены самыми совершенными схемами контроля за состоянием батарей. Не мешая выполнению основной функции ИБП, схемы мониторинга, как правило, контролируют следующие параметры батареи: зарядный и разрядный токи, возможность избыточного заряда, рабочую температуру, емкость.

    Кроме того, с их помощью рассчитываются такие переменные, как реальное время автономной работы, конечное напряжение зарядки в зависимости от реальной температуры внутри батареи и др.

    Подзарядка батареи происходит по мере необходимости и в наиболее оптимальном режиме для ее текущего состояния. Когда емкость батареи снижается ниже допустимого предела, система контроля автоматически посылает предупреждающий сигнал о необходимости ее скорой замены.

    Топологические изыски

    Долгое время специалисты по системам электропитания руководствовались аксиомой, что мощные системы бесперебойного питания должны иметь топологию on-line. Считается, что именно такая топология гарантирует защиту от всех нарушений на линиях силового питания, позволяет фильтровать помехи во всем частотном диапазоне, обеспечивает на выходе чистое синусоидальное напряжение с номинальными параметрами. Однако за качество электропитания приходится платить повышенным выделением тепловой энергии, сложностью электронных схем, а следовательно, потенциальным снижением надежности. Но, несмотря на это, за многолетнюю историю выпуска мощных ИБП были разработаны исключительно надежные аппараты, способные работать в самых невероятных условиях, когда возможен отказ одного или даже нескольких узлов одновременно. Наиболее важным и полезным элементом мощных ИБП является так называемый байпас. Это обходной путь подачи энергии на выход в случае ремонтных и профилактических работ, вызванных отказом некоторых компонентов систем или возникновением перегрузки на выходе. Байпасы бывают ручными и автоматическими. Они формируются несколькими переключателями, поэтому для их активизации требуется некоторое время, которое инженеры постарались снизить до минимума. И раз уж такой переключатель был создан, то почему бы не использовать его для снижения тепловыделения в то время, когда питающая сеть пребывает в нормальном рабочем состоянии. Так появились первые признаки отступления от "истинного" режима on-line.

    Новая топология отдаленно напоминает линейно-интерактивную. Устанавливаемый пользователем системы порог срабатывания определяет момент перехода системы в так называемый экономный режим. При этом напряжение из первичной сети поступает на выход системы через байпас, однако электронная схема постоянно следит за состоянием первичной сети и в случае недопустимых отклонений мгновенно переключается на работу в основном режиме on-line.

    Подобная схема применена в ИБП серии Synthesis фирмы Chloride (Сети и системы связи, 1996. № 10. С. 131), механизм переключения в этих устройствах назван "интеллектуальным" ключом. Если качество входной линии укладывается в пределы, определяемые самим пользователем системы, аппарат работает в линейно-интерактивном режиме. При достижении одним из контролируемых параметров граничного значения система начинает работать в нормальном режиме on-line. Конечно, в этом режиме система может работать и постоянно.

    За время эксплуатации системы отход от исходной аксиомы позволяет экономить весьма значительные средства за счет сокращения тепловыделения. Сумма экономии оказывается сопоставимой со стоимостью оборудования.

    Надо отметить, что от своих исходных принципов отошла еще одна фирма, ранее выпускавшая только линейно-интерактивные ИБП и ИБП типа off-line сравнительно небольшой мощности. Теперь она превысила прежний верхний предел мощности своих ИБП (5 кВА) и построила новую систему по топологии on-line. Я имею в виду фирму АРС и ее массив электропитания Simmetra (Сети и системы связи. 1997. № 4. С. 132). Создатели попытались заложить в систему питания те же принципы повышения надежности, которые применяют при построении особо надежной компьютерной техники. В модульную конструкцию введена избыточность по отношению к управляющим модулям и батареям. В любом из трех выпускаемых шасси из отдельных модулей можно сформировать нужную на текущий момент систему и в будущем наращивать ее по мере надобности. Суммарная мощность самого большого шасси достигает 16 кВА. Еще рано сравнивать эту только что появившуюся систему с другими включенными в таблицу. Однако факт появления нового продукта в этом исключительно устоявшемся секторе рынка сам по себе интересен.

    Архитектура

    Суммарная выходная мощность централизованных систем бесперебойного питания может составлять от 10—20 кВА до 200—300 МВА и более. Соответственно видоизменяется и структура систем. Как правило, она включают в себя несколько источников, соединенных параллельно тем или иным способом. Аппаратные шкафы устанавливают в специально оборудованных помещениях, где уже находятся распределительные шкафы выходного напряжения и куда подводят мощные входные силовые линии электропитания. В аппаратных помещениях поддерживается определенная температура, а за функционированием оборудования наблюдают специалисты.

    Многие реализации системы питания для достижения необходимой надежности требуют совместной работы нескольких ИБП. Существует ряд конфигураций, где работают сразу несколько блоков. В одних случаях блоки можно добавлять постепенно, по мере необходимости, а в других — системы приходится комплектовать в самом начале проекта.

    Для повышения суммарной выходной мощности используют два варианта объединения систем: распределенный и централизованный. Последний обеспечивает более высокую надежность, но первый более универсален. Блоки серии EDP-90 фирмы Chloride допускают объединение двумя способами: и просто параллельно (распределенный вариант), и с помощью общего распределительного блока (централизованный вариант). При выборе способа объединения отдельных ИБП необходим тщательный анализ структуры нагрузки, и в этом случае лучше всего обратиться за помощью к специалистам.

    Применяют параллельное соединение блоков с централизованным байпасом, которое используют для повышения общей надежности или увеличения общей выходной мощности. Число объединяемых блоков не должно превышать шести. Существуют и более сложные схемы с избыточностью. Так, например, чтобы исключить прерывание подачи питания во время профилактических и ремонтных работ, соединяют параллельно несколько блоков с подключенными к отдельному ИБП входными линиями байпасов.

    Особо следует отметить сверхмощные ИБП серии 3000 фирмы Exide. Суммарная мощность системы питания, построенная на модульных элементах этой серии, может достигать нескольких миллионов вольт-ампер, что сравнимо с номинальной мощностью генераторов некоторых электростанций. Все компоненты серии 3000 без исключения построены на модульном принципе. На их основе можно создать особо мощные системы питания, в точности соответствующие исходным требованиям. В процессе эксплуатации суммарную мощность систем можно наращивать по мере увеличения нагрузки. Однако следует признать, что систем бесперебойного питания такой мощности в мире не так уж много, их строят по специальным контрактам. Поэтому серия 3000 не включена в общую таблицу. Более подробные данные о ней можно получить на Web-узле фирмы Exide по адресу http://www.exide.com или в ее московском представительстве.

    Важнейшие параметры

    Для систем с высокой выходной мощностью очень важны показатели, которые для менее мощных систем не имеют первостепенного значения. Это, например, КПД — коэффициент полезного действия (выражается либо действительным числом меньше единицы, либо в процентах), показывающий, какая часть активной входной мощности поступает к нагрузке. Разница значений входной и выходной мощности рассеивается в виде тепла. Чем выше КПД, тем меньше тепловой энергии выделяется в аппаратной комнате и, значит, для поддержания нормальных рабочих условий требуется менее мощная система кондиционирования.

    Чтобы представить себе, о каких величинах идет речь, рассчитаем мощность, "распыляемую" ИБП с номинальным значением на выходе 8 МВт и с КПД, равным 95%. Такая система будет потреблять от первичной силовой сети 8,421 МВт — следовательно, превращать в тепло 0,421 МВт или 421 кВт. При повышении КПД до 98% при той же выходной мощности рассеиванию подлежат "всего" 163 кВт. Напомним, что в данном случае нужно оперировать активными мощностями, измеряемыми в ваттах.

    Задача поставщиков электроэнергии — подавать требуемую мощность ее потребителям наиболее экономным способом. Как правило, в цепях переменного тока максимальные значения напряжения и силы тока из-за особенностей нагрузки не совпадают. Из-за этого смещения по фазе снижается эффективность доставки электроэнергии, поскольку при передаче заданной мощности по линиям электропередач, через трансформаторы и прочие элементы систем протекают токи большей силы, чем в случае отсутствия такого смещения. Это приводит к огромным дополнительным потерям энергии, возникающим по пути ее следования. Степень сдвига по фазе измеряется не менее важным, чем КПД, параметром систем питания — коэффициентом мощности.

    Во многих странах мира существуют нормы на допустимое значение коэффициента мощности систем питания и тарифы за электроэнергию нередко зависят от коэффициента мощности потребителя. Суммы штрафов за нарушение нормы оказываются настольно внушительными, что приходится заботиться о повышении коэффициента мощности. С этой целью в ИБП встраивают схемы, которые компенсируют сдвиг по фазе и приближают значение коэффициента мощности к единице.

    На распределительную силовую сеть отрицательно влияют и нелинейные искажения, возникающие на входе блоков ИБП. Почти всегда их подавляют с помощью фильтров. Однако стандартные фильтры, как правило, уменьшают искажения только до уровня 20—30%. Для более значительного подавления искажений на входе систем ставят дополнительные фильтры, которые, помимо снижения величины искажений до нескольких процентов, повышают коэффициент мощности до 0,9—0,95. С 1998 г. встраивание средств компенсации сдвига по фазе во все источники электропитания компьютерной техники в Европе становится обязательным.

    Еще один важный параметр мощных систем питания — уровень шума, создаваемый такими компонентами ИБП, как, например, трансформаторы и вентиляторы, поскольку их часто размещают вместе в одном помещении с другим оборудованием — там где работает и персонал.

    Чтобы представить себе, о каких значениях интенсивности шума идет речь, приведем для сравнения такие примеры: уровень шума, производимый шелестом листвы и щебетанием птиц, равен 40 дБ, уровень шума на центральной улице большого города может достигать 80 дБ, а взлетающий реактивный самолет создает шум около 100 дБ.

    Достижения в электронике

    Мощные системы бесперебойного электропитания выпускаются уже более 30 лет. За это время бесполезное тепловыделение, объем и масса их сократились в несколько раз. Во всех подсистемах произошли и значительные технологические изменения. Если раньше в инверторах использовались ртутные выпрямители, а затем кремниевые тиристоры и биполярные транзисторы, то теперь в них применяются высокоскоростные мощные биполярные транзисторы с изолированным затвором (IGBT). В управляющих блоках аналоговые схемы на дискретных компонентах сначала были заменены на цифровые микросхемы малой степени интеграции, затем — микропроцессорами, а теперь в них установлены цифровые сигнальные процессоры (Digital Signal Processor — DSP).

    В системах питания 60-х годов для индикации их состояния использовались многочисленные аналоговые измерительные приборы. Позднее их заменили более надежными и информативными цифровыми панелями из светоизлучающих диодов и жидкокристаллических индикаторов. В наше время повсеместно используют программное управление системами питания.

    Еще большее сокращение тепловых потерь и общей массы ИБП дает замена массивных трансформаторов, работающих на частоте промышленной сети (50 или 60 Гц), высокочастотными трансформаторами, работающими на ультразвуковых частотах. Между прочим, высокочастотные трансформаторы давно применяются во внутренних источниках питания компьютеров, а вот в ИБП их стали устанавливать сравнительно недавно. Применение IGBT-приборов позволяет строить и бестрансформаторные инверторы, при этом внутреннее построение ИБП существенно меняется. Два последних усовершенствования применены в ИБП серии Synthesis фирмы Chloride, отличающихся уменьшенным объемом и массой.

    Поскольку электронная начинка ИБП становится все сложнее, значительную долю их внутреннего объема теперь занимают процессорные платы. Для радикального уменьшения суммарной площади плат и изоляции их от вредных воздействий электромагнитных полей и теплового излучения используют электронные компоненты для так называемой технологии поверхностного монтажа (Surface Mounted Devices — SMD) — той самой, которую давно применяют в производстве компьютеров. Для защиты электронных и электротехнических компонентов имеются специальные внутренние экраны.

    ***

    Со временем серьезный системный подход к проектированию материальной базы предприятия дает значительную экономию не только благодаря увеличению срока службы всех компонентов "интегрированного интеллектуального" здания, но и за счет сокращения расходов на электроэнергию и текущее обслуживание. Использование централизованных систем бесперебойного питания в пересчете на стоимость одного рабочего места дешевле, чем использование маломощных ИБП для рабочих станций и даже ИБП для серверных комнат. Однако, чтобы оценить это, нужно учесть все факторы установки таких систем.

    Предположим, что предприятие свое помещение арендует. Тогда нет никакого смысла разворачивать дорогостоящую систему централизованного питания. Если через пять лет руководство предприятия не намерено заниматься тем же, чем занимается сегодня, то даже ИБП для серверных комнат обзаводиться нецелесообразно. Но если оно рассчитывает на то, что производство будет держаться на плаву долгие годы и решило оснастить принадлежащее им здание системой бесперебойного питания, то для выбора такой системы нужно воспользоваться услугами специализированных фирм. Сейчас их немало и в России. От этих же фирм можно получить информацию о так называемых системах гарантированного электропитания, в которые включены дизельные электрогенераторы и прочие, более экзотические источники энергии.

    Нам же осталось рассмотреть лишь методы управления ИБП, что мы и сделаем в одном из следующих номеров нашего журнала

    [ http://www.ccc.ru/magazine/depot/97_07/read.html?0502.htm]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > ИБП для централизованных систем питания

См. также в других словарях:

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»